Designing Abstractions

e
Fevhia

M-

y »

M

k(

/

\\\\

r
\b ‘
I|
EETTEA LAY L "“-

T

Outline for Today

« Apply to Section Lead!
* A quick recruiting pitch.
* Review: What’s an Abstraction?

* You're well acquainted with them - but let’s
take stock anyway.

« A Missing Container
 Some motivating problems.
* Creating Our Own Classes

 Expanding our toolkit.

CS198 Section

Leading

cs198@cs.stanford.edu

Who should section lead?

For this round of applications, we are looking
for applicants who are currently enrolled
CS106B... and that’s you!

We are looking for section leaders from all
backgrounds who can relate to students and
clearly explain concepts.

What do section leaders do?

Teach a weekly 1 hour section

Help students in the LalR

Grade CS106 assignments

Hold 1Gs with students

Grade midterms and finals

Get paid $18.50/hour (more with seniority)
Have fun!

Time and requirements

You'll need to:

e Section lead for two quarters!
Take CS198 for 3-4 units (1st quarter only)

®
e Attend staff meetings (Monday, 5:30-6:30PM)
®

Attend workshops (Mon/Wed evenings, 1st
quarter only)

e Fulfill all teaching, LalR, and grading
responsibilities

Why section lead?

“Learn to teach; teach to learn”
Work directly with students
Participate in fun events

Join an amazing group of people
Leave your mark on campus

Participate in fun events

LalR Formal
Special D

Movie Nights
BAWK

Lecturer Hangouts
New SL Picnic
Swag

And more!

Apply Now

Applications are open!

Deadlines:

Friday, February 17th at 11:59PM PT for students who are
currently enrolled in CS106B

Online application: cs198.stanford.edu
Contact us: cs198@cs.stanford.edu

Designing Abstractions

ab-strac-tion

[...]

the process of considering
something independently of
Its associations, attributes, or

concrete accompaniments.

Source: Oxford Languages

Language profile Fire simulation
Road network Terrain heightmap

RNA translation Human pyramid weights

Map Grid

Set Queue

Worker schedule Looping piece of music

Collection of languages

Information on flood

Neighboring cities propagation

Building a rich vocabulary of abstractions
makes it possible to model and solve a
wider class of problems.

Question One:

How do we create new abstractions to
model ideas not precisely captured by the
standard container types?

Question Two:

How do the abstractions we’ve been using
so far work, and how can we use that
knowledge to build richer abstractions?

Expanding Our Abstraction Vocabulary

Bananagrams Tiles

Bananagrams Tiles

Why can’t we use a Set<char>
to represent the bag of letters?

Answer at
https://pollev.com/cs106bwin23/

https://pollev.com/cs106bwin23/

Bananagrams Tiles

Why can’t we use a Set<char>
to represent the bag of letters?

Answer at
https://pollev.com/cs106bwin23/

https://pollev.com/cs106bwin23/

Creating a Maze

i
A 4

Creating a Maze

i
A 4

Creating a Maze

i
A 4

Creating a Maze

i
A 4

Creating a Maze

i
A 4

Creating a Maze

i
@

Creating a Maze

1a8
B

& @

Creating a Maze

)

m
Il
(o

¢

Creating a Maze

)

m
Il
(o

¢

Creating a Maze

)

m
Il
(o

¢

Creating a Maze

Creating a Maze

)

m
o—o O
@ O
]
e—0

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

m
o—o O ¢

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Generating Music

https://dice.humdrum.org/

https://dice.humdrum.org/

Random Bags

« Arandom bag is a container similar to a stack or queue. It
supports two operations:

* add, which puts an element into the random bag, and

e remove random, which returns and removes a random element
from the bag.

« This is exactly what we need for these examples:

« Bananagrams: We add all the tiles to the bag. Whenever we
need to draw, we call remove random to get another.

« Mazes: We add the walls of the initial cell to the bag. Then we
repeatedly remove random a wall, knock it down if it doesn’t
cause a loop, and add all walls of the new square into the maze.

 Generating Music: We add all the music measures to the bag,
then remove random enough to make a small tune.

« Unfortunately, there is no RandomBag type the way there’s Stack,
Queue, etc. How would we create one?

Classes in C++

Classes

Interface
* Vector, Stack, Queue, Map, (What it looks like)
etc. are classes in
C++.

 Classes contain

* an interface specitfying
what operations can be
performed on instances
of the class.

Classes

Interface
* Vector, Stack, Queue, Map, (What it looks like)

etc. are classes in
C++.

 Classes contain

* an interface specitfying
what operations can be
performed on instances
of the class, and

* an implementation
specifying how those
operations are to be
performed.

|
|
|
|
‘ .
|

Where Implefhentation
we're going (How it works)

Classes

Interface

* A class provides a general (What it looks like)

pattern for what its
instances look like.

e \Vector is a class; each
variable of type Vector is an
instance of the class.

 Each instance is a separate
object, but all instances
have the same common
interface and set of
behaviors.

* You can use a class through
its interface even if you
have no idea how it works
behind the scenes.

!
|
|
|
‘
|

Impleientdiion
(How it works)

Classes

Interface

* You can create your (What it looks like)

own classes in C++.

* This lets us expand
our vocabulary of
abstractions so we
can solve more
problems.

» Today we’ll see how
to make a RandomBag
type we can use 24 (Y
whenever we'd like. ImpleEig T

(How it works)

Classes

Interface

* Defining a class in C++ (What it looks like)

(usually) takes two
steps:

 Create a header file
(ends in .h) specitying the
interface and a few
implementation details.

* Create an
implementation file
(ends with .cpp)
containing the class
implementation.

 Clients of the class can ‘

then include the header Imp_le,h;eﬁt&éi‘on
file to use the class. (How it works)

|
|
|
|
‘ X
|

What’s in a Header?

What’s in a Header?

#pragma once

This is called an include
guard. It’s used to make
sure weird things don't
happen if you include the
same header twice.

Curious how it works?
Come talk to me after
class!

What’s in a Header?

#pragma once

class RandomBag {

This is a class
definition. We're
creating a new class
called RandomBag. Like a
struct, this defines the
name of a new type
}; that we can use in our

programs.

What’s in a Header?

#pragma once

class RandomBag {

Don’t forget to add
this semicolon! You’ll
get some Hairy Scary
Compiler Errors if you
leave it out.

}s

What’s in a Header?

#pragma once

Interface
(What it looks like)
class RandomBag {
public:
private: b 4
}; Impleinentation
(How it works)

What’s in a Header?

#pragma once

class RandomBag {
public:

private:

s

What’s in a Header?

#pragma once The public interface
specifies what
functions you can call

class RandomBag { on objects of this type.

public: Think things like the

A Vector’s .add() function
or the string’s .find().

private:

}s

What’s in a Header?

#pragma once

class RandomBag {
public:

\

private:

The public interface
specifies what
functions you can call
on objects of this type.

Think things like the
Vector’s .add() function
or the string’s .find().

T

The private implementation
contains information that
objects of the class type will
need in order to do their job
properly. This is invisible to
people using the class.

What’s in

a Header?

#pragma once

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:

}s

These are member
functions of the
RandomBag class. They’re
functions you can call

on objects of the type
RandomBag.

All member functions
need to be declared in
the class definition.
We’ll implement them

in our .cpp file.

What’s in a Header?

#pragma once
#include "vector.h"

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:
Vector<int> elems;
}s

This is a data member of
the class. This tells us
how the class is
implemented. Internally,
we're going to store a
Vector<int> holding all the
elements. The only code
that can access or touch
this Vector is the RandomBag

implementation.

What’s in a Header?

#pragma once
#include "vector.h"

class RandomBag {
public:
vold add(int value);
int removeRandom();

private:
Vector<int> elems;
}s

class RandomBag {
public:
void add(int value);
int removeRandom();

private:

}s

Vector<int> elems;

class RandomBag {
public:
void add(int value);
int removeRandom();

int size();
bool i1sEmpty();

private:
Vector<int> elems;

}s

class RandomBag {
public:
void add(int value);
int removeRandom();

int size() const;
bool i1sEmpty() const;

private:
Vector<int> elems;

}s

Your Action Items

 Prepare for the Midterm

 There’s a review session this week, three
practice exams up on the course website,
and a huge searchable bank of practice
problems to pull from. Best of luck - you can
do this!

* Read Chapter 6 of the textbook.

 There’s a ton of goodies in there about class
design that we’ll talk about later on.

Next Time

« Midterm on Monday - No Class
 Then, When We Get Back...

 Dynamic Allocation

- Where does memory come from?
* Constructors and Destructors

- Taking things out and putting them away.
« Implementing the Stack

- Peering into our tools!

	Slide 1
	Slide 2
	Slide 3
	Who should section lead?
	What do section leaders do?
	Time and requirements
	Why section lead?
	Participate in fun events
	Apply Now
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

