

Designing Abstractions

Roy Lichtenstein, Bull Profile I – VI

Outline for Today

● Apply to Section Lead!
● A quick recruiting pitch.

● Review: What’s an Abstraction?
● You’re well acquainted with them – but let’s

take stock anyway. 😃
● A Missing Container

● Some motivating problems.
● Creating Our Own Classes

● Expanding our toolkit.

CS198 Section
Leading

cs198@cs.stanford.edu

Who should section lead?

For this round of applications, we are looking
for applicants who are currently enrolled

CS106B… and that’s you!

We are looking for section leaders from all
backgrounds who can relate to students and

clearly explain concepts.

What do section leaders do?

● Teach a weekly 1 hour section
● Help students in the LaIR
● Grade CS106 assignments
● Hold IGs with students
● Grade midterms and finals
● Get paid $18.50/hour (more with seniority)
● Have fun!

Time and requirements

You’ll need to:
● Section lead for two quarters!
● Take CS198 for 3-4 units (1st quarter only)
● Attend staff meetings (Monday, 5:30-6:30PM)
● Attend workshops (Mon/Wed evenings, 1st

quarter only)
● Fulfill all teaching, LaIR, and grading

responsibilities

Why section lead?

● “Learn to teach; teach to learn”
● Work directly with students
● Participate in fun events
● Join an amazing group of people
● Leave your mark on campus

Participate in fun events

● LaIR Formal
● Special D
● Movie Nights
● BAWK
● Lecturer Hangouts
● New SL Picnic
● Swag
● And more!

Apply Now

Applications are open!

Deadlines:

Friday, February 17th at 11:59PM PT for students who are
currently enrolled in CS106B

Online application: cs198.stanford.edu

Contact us: cs198@cs.stanford.edu

Designing Abstractions

ab·strac·tion

[...]
the process of considering

something independently of
its associations, attributes, or

concrete accompaniments.

Source: Oxford Languages

Map

Set Queue

Language profile

Road network

RNA translation

Worker schedule

Collection of languages

Neighboring cities

Looping piece of music

Information on flood
propagation

Grid

Fire simulation

Terrain heightmap

Human pyramid weights

Building a rich vocabulary of abstractions
makes it possible to model and solve a

wider class of problems.

Question One:

How do we create new abstractions to
model ideas not precisely captured by the

standard container types?

Question Two:

How do the abstractions we’ve been using
so far work, and how can we use that

knowledge to build richer abstractions?

Expanding Our Abstraction Vocabulary

Bananagrams Tiles

Bananagrams Tiles

Why can’t we use a Set<char>
to represent the bag of letters?

Answer at
https://pollev.com/cs106bwin23/

https://pollev.com/cs106bwin23/

Bananagrams Tiles

Why can’t we use a Set<char>
to represent the bag of letters?

Answer at
https://pollev.com/cs106bwin23/

https://pollev.com/cs106bwin23/

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Creating a Maze

Generating Music

https://dice.humdrum.org/

https://dice.humdrum.org/

Random Bags

● A random bag is a container similar to a stack or queue. It
supports two operations:

● add, which puts an element into the random bag, and
● remove random, which returns and removes a random element

from the bag.
● This is exactly what we need for these examples:

● Bananagrams: We add all the tiles to the bag. Whenever we
need to draw, we call remove random to get another.

● Mazes: We add the walls of the initial cell to the bag. Then we
repeatedly remove random a wall, knock it down if it doesn’t
cause a loop, and add all walls of the new square into the maze.

● Generating Music: We add all the music measures to the bag,
then remove random enough to make a small tune.

● Unfortunately, there is no RandomBag type the way there’s Stack,
Queue, etc. How would we create one?

Classes in C++

Classes

● Vector, Stack, Queue, Map,
etc. are classes in
C++.

● Classes contain
● an interface specifying

what operations can be
performed on instances
of the class.

an implementation
specifying how those
operations are to be
performed.

Interface
(What it looks like)

Interface
(What it looks like)

Classes

● Vector, Stack, Queue, Map,
etc. are classes in
C++.

● Classes contain
● an interface specifying

what operations can be
performed on instances
of the class, and

● an implementation
specifying how those
operations are to be
performed.

Interface
(What it looks like)

Implementation
(How it works)

Where
we’ve
been

Where
we’re going

Interface
(What it looks like)

Classes

● A class provides a general
pattern for what its
instances look like.
● Vector is a class; each

variable of type Vector is an
instance of the class.

● Each instance is a separate
object, but all instances
have the same common
interface and set of
behaviors.

● You can use a class through
its interface even if you
have no idea how it works
behind the scenes.

Interface
(What it looks like)

Implementation
(How it works)

Interface
(What it looks like)

Classes

● You can create your
own classes in C++.

● This lets us expand
our vocabulary of
abstractions so we
can solve more
problems.

● Today we’ll see how
to make a RandomBag
type we can use
whenever we’d like.

Interface
(What it looks like)

Implementation
(How it works)

Interface
(What it looks like)

Classes

● Defining a class in C++
(usually) takes two
steps:
● Create a header file

(ends in .h) specifying the
interface and a few
implementation details.

● Create an
implementation file
(ends with .cpp)
containing the class
implementation.

● Clients of the class can
then include the header
file to use the class.

Interface
(What it looks like)

Implementation
(How it works)

What’s in a Header?

What’s in a Header?
#pragma once

This is called an include
guard. It’s used to make
sure weird things don’t

happen if you include the
same header twice.

Curious how it works?
Come talk to me after

class!

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

This is a class
definition. We’re

creating a new class
called RandomBag. Like a
struct, this defines the

name of a new type
that we can use in our

programs.

What’s in a Header?
#pragma once

nclude "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

Don’t forget to add
this semicolon! You’ll
get some Hairy Scary
Compiler Errors if you

leave it out.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

Interface
(What it looks like)

Implementation
(How it works)

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

The public interface
specifies what

functions you can call
on objects of this type.

Think things like the
Vector’s .add() function
or the string’s .find().

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

The public interface
specifies what

functions you can call
on objects of this type.

Think things like the
Vector’s .add() function
or the string’s .find().

The private implementation
contains information that

objects of the class type will
need in order to do their job
properly. This is invisible to

people using the class.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

These are member
functions of the

RandomBag class. They’re
functions you can call
on objects of the type

RandomBag.

All member functions
need to be declared in

the class definition.
We’ll implement them

in our .cpp file.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

This is a data member of
the class. This tells us

how the class is
implemented. Internally,

we’re going to store a
Vector<int> holding all the
elements. The only code
that can access or touch

this Vector is the RandomBag
implementation.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size();
 bool isEmpty();

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

Your Action Items

● Prepare for the Midterm
● There’s a review session this week, three

practice exams up on the course website,
and a huge searchable bank of practice
problems to pull from. Best of luck – you can
do this!

● Read Chapter 6 of the textbook.
● There’s a ton of goodies in there about class

design that we’ll talk about later on.

Next Time

● Midterm on Monday – No Class
● Then, When We Get Back...

● Dynamic Allocation
– Where does memory come from?

● Constructors and Destructors
– Taking things out and putting them away.

● Implementing the Stack
– Peering into our tools!

	Slide 1
	Slide 2
	Slide 3
	Who should section lead?
	What do section leaders do?
	Time and requirements
	Why section lead?
	Participate in fun events
	Apply Now
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

